731
730 R. Constable Types

3.2. Small fragment — arithmetic _ jand equ ality R, oo pta Do

_0inN suc(t) = suc(t') in N pair(s;t) = pair(s';t') in (S x T)
:ve nature of the type N and of the theory in general is apparent from
.du?tlv That is, from outside the theory we can see this structure. We
:tatl(?(;n principl,es from the informal mathematics (the metamathematics)
‘mduc 1 le. every canonical expression for a number is either 0 or suc(n}.
év- :1}1(:;: Ii)s 1’10 construct inside the theory which expresses this fact. We will

i y add one in section 3.3.

We build a small fragment of a type theory to illustrate the points we have‘
made. The explanations are all inductive. We let S and T be metavariah]eg
types and let, s,t, s;,t;, also &', ¢, sl, ¢, denote terms.

We arrange the theory around a single judgment, the equality s = ¢ ip W
avoid membership and typehood judgments by “folding them into equality” jug
make the fragment more compact. First we look at an informal account of
theory.

The intended meaning of s =t in T is that T is a type and s and ¢ are g,
elements of it. Thus a premise such as s = ¢ in T implies that T is a type and
s and ¢ are elements of T' (thus subsuming membership judgment).?

The only atomic type is N. If S and T are types, then so is (S x T); these:
the only compound types.

The canonical elements of N are 0 and suc(n) where n is an element of
canonical or not. The canonical elements of (S x T) are pair(s;t) where s i
type S and ¢ of type T'. The expressions lof (p) and 2of (p) are noncanonical. T
evaluation of lof (pair(s;t)) is s and of 2of (pair(s;t)) is ¢.

The inference mechanism must generate the evident judgments of the form s y 0=0inN
inT according t.o the above serr‘lanti‘cs. Thi.s ‘is easily done as an inductive definiti : " 0 in Nsuc(0) suc(0) = suc(o) in N
The rules are all given as clauses in this definition of the usual style (recall Aczel [19] N ir(0; suc(0)) in N x N
for example). , s 5c(0)) par ; : ir(0; suc(0))) evals-to 0

We start with terms and their evaluation. The only atomic terms are 0 and N- pair (0; suc(0))) of (pair(0; suc(0)) in N 1of (pair (0; su B
s and ¢t are terms, then so are suc(t), (s x t), pair(s;t), 1of (t), 20f (£). Of course, y
all terms will be given meaning, e.g. (0 x N), suc(N), 1of (N) will not be.

ples. Here are examples of true judgments that we can make: syc(O) = suc(0)
Thi t;ells us that N is a type and suc(0) an element of it. Also pazr(p; suc(0)) =
; lsc(o)) in (N x N) which tells us that (N x N) is a type with pair(0; suc(0))
‘. Also 1of (pair(0;a)) belongs to N and suc(lof (pair(0;a))) does as well

bitrary a. . ‘
v is a derivation that suc(lof (pair(0; suc(0)))) = 2of (pair (0; suc(0))) in N.30

air (0; suc(0)))= 20f (pair(0; suc(0))) in N 2of (pair (0; suc(0))) evals_to suc(0)

pair(0; suc(0))) = 0in N 20f (pair(0; suc(0))) = suc(0) in N
dof (pair (0; suc(0)))) = suc(0) in N suc(0) = 2of (pair(0; suc(0))) in N

Evaluation. Let s and ¢ be terms.

0 evals_to O N evalsto N suc(t) evals_to suc(t) pair(s;t) evals_to pair(s;t)

suc(1of (pair(0; suc(0)))) = 20f (pair (0; suc(0))) in N
1of (pair(s;t)) evalstos 2of (pair(s;t)) evals_to t

Remark: s(N) evals_to s(N), lof (pair(N;0)) evals_to N. So evaluation applieS“ alyzing the fragment. This little fragment illustrates several features of the

meaningless terms. It is a purely formal relation, an effective calculation. Thus
base of this theory includes a formal notion of effective computability (c.f. Roge
[1967]) compatible with various formalizations of that notion, but not restrict
necessarily to them (e.g. Church’s thesis is not assumed). Also note that evalsf0*
idempotent; if ¢ evals_to t' then ¢ evals_tot' and ¢ is a value.
general equality
t,=t,inT ti=t,inT ty=t;inT ti=tinT t evalstofl
t2=t1inT t1=t3inT ti:tzinT

Birst, evaluation is defined prior to typing. The evals_to relatiox} is purely forr‘nal
18 grounded in language which is a prerequisite for communicating mathe.n%atlcs.
iPutation does not take into account the meaning of terms. This definition of
“Putability might be limiting since we can imagine a notio.n that relies on ?he
*Mation in typehood, and it is possible that a “semantic notion” of computation
be explored in addition, once the types are laid down.3! Our approach to

g type theory, we will write the derivations in the usual bottom-up style with the conclusion

* D0ttom, Jeaves at the top. : : ided b
IZF this is precisely the way computation is done, based on the information provided by a

ership proof.

i yi
*In the type theory of Martin-L&f [1982], a premise such as s = ¢ in T presupposes that
a type and that s € T,t € T. This must be known before the judgment makes sense.

732 R. Constable

computation is compatible with the view taken in computation theory (c.f. Rogers
[1967]).

Second, the semantics of even this simple theory fragment shows that the coneepy
of a proposition involves the notion of its meaningfulness (or well-formedness). For
example, what appears to be a simple proposition, ¢ = ¢ in T, expresses the
judgments that T is a type and that ¢ belongs to this type. These judgments are
part of understanding the judgment of truth.

"To stress this point, notice that by postulating 0 = 0 in N we are saying that
N is a type, that 0 belongs to N and that it equals itself. The truth judgment jg
entirely trivial; so the significance of ¢ =t in T lies in the well-formedness judgmengs
implicit in it. These judgments are normally left implicit in accounts of logic.

Notice that the well-formedness judgments cannot be false. They are a different
category of judgment from those about truth. To say that 0 € N is to define zero,
and to say N is a type is to define N. We see this from the rules since there are ng
separate rules of the form “N is_a type” or 04s_a N.” Note, because ¢t = t whenever ¢
is in a type, the judgment t =t in T happens to be true ezactly when it is well-formed,

Finally the points about ¢ = ¢ in 7' might be clarified by contrasting it with
suc = suc in 0. This judgment is meaningless in our semantics because 0 is not a
type. Likewise suc = suc in N is meaningless because although N is a type, suc
is not a member of it. Similarly, 0 = suc in N is meaningless since suc is not a
member of N according to our semantics. None of these expressions, which read like
propositions, is false; they are just senseless. So we cannot understand, with respect
to our semantics, what it would mean for them to be false.

Third, notice that the semantics of the theory were given inductively (although
informally), and the proof rules were designed to directly express this inductive
definition. This feature will be true for the full theory as well, although the basic
judgments will involve variables and will be more complex both semantically and
proof theoretically.

Fourth, the semantic explanations are rooted in the use of informal language. We
speak of terms, substitution and evaluation. The use of language is critical to ex-
pressing computation. We do not treat terms as mathematical objects nor evaluation
as a mathematical relation. To do this would be to conduct metamathematics about
the system, and that metamathematics would then be based on some prior informal
language. When we consider implementing the theory, it is the informal language
which we implement, translating it to a programming notation lying necessarily
outside of the theory.

Fifth, although the theory is grounded in language, it refers to abstract object?'
This abstraction is provided by the equality rules. So while 1of (pair(0; suc(0))) "
not a canonical integer in the term language, we cannot observe this linguistic fact 1%
the theory. This term denotes the number 0. The theory is referential in this sensé:

Sixth, the theory is defined by rules. Although these rules reflect concepts that
we have mastered in language, so are meaningful, and although all of the judgments
we assert are evident, it is the rules that define the theory. Since the rules reflect @
semantic philosophy, we can see in them answers to basic questions about the object®

Types 733

of the theory. We can say what a number is, what 0 is, what successor is. Since the
fragment is so small, the answers are a bit weak, but we will strengthen it later.

geventh, the theory is open-ended. We expect to extend this theory to formalize
ever larger fragments of our intuitions about numbers, types, and propositions. As
Godel showed, this process is never complete. So at any point the theory can
be extended. By later specifying how evaluation and typing work, we provide a
framework for future extensions and provide the guarantees that extensions will
preserve the truths already expressed.

3.3. First extensions

We could extend the theory by adding further forms of computation such as a
term, prd, for predecessor along with the evaluation

prd(suc(n)) evals_to n.

We can also include a term for addition, add(s;t) along with the evaluation rules

add(n;t) evals_to s
add(suc(n);t) evals_to suc(s')

add(0;t) evals_to ¢

We include, as well, a term for multiplication, mult(s; t) along with the evaluation
rule

mult(n;t) evalstom add(m;t) evals_toa
mult(suc(n); t) evals_to a

mult(0;t) evals_to 0

These rules enable us to type more terms and assert more equalities. We can
easily prove, for instance, that

add(suc(0); suc(0)) = mult(suc(0); add(suc(0); suc(0))) in N.

But this “theory” is woefully weak. It cannot

e internally express general statements such as prd(suc(z)) = z in N or
add(suc(z);y) = suc(add(z;y)) for any = because there is no notion of variable,
but these are true in the metalanguage.

® express function definition patterns such as the primitive recursions which were

used to define add, multiply and for which we know general truths.

® express the inductive nature of N and its consequences for the uniqueness of

functions defined by primitive recursion.

Adding capability to define new functions and state their “functionality” takes
8 from a concrete theory to an abstract one; from specific equality judgments to
netional judgments. These functional judgments are the essence of the theory, and

€y provide the basis for connecting to the propositional functions of typed logic.
OWwe add them next.

—

734 R. Constable

The simplest new construct to incorporate is one for constructing any object
by following the pattern for the construction of a number. We call it a (P”mitive)
recursion combinator, R. It captures the pattern of definition of prd, add, mult give,
above. It will later be used to explain induction as well.

The defining property of R is its rule of computation and its respect for equality,
We present the computation rule using substitution.3? The simplest way to to thig
as to use the standard mechanism of bound variables (as in the lambda calculus o
in quantifier notation). To this end we let u,v,w,z,y, 2 be variables, and given ap
expression exrp of the theory, we let u.exp or u,v.exrp Or u,v, T.eTp Or generally
Ui, ..., Un-ezp (also written t.exp) be a binding phrase. We say that the u; are
binding occurrences of variables whose scope is exp. The occurrences of u; in ezp are
bound (by the smallest binding phrase containing them). The unbound variables of
exp are called free, and if z is a free variable of @.exp, then #.exp(t/z] denotes the
substitution of ¢ for every free occurrence of z in exp. If any of the u; occur free in
¢, then as usual @.ezp[t/z] produces a new binding phrase @'.exp’ where the binding
variables are renamed to prevent capture of free variables of ¢.3

blt/v] evals_to ¢
R(0;t;v.b;u,v,1.h) evalstoc

R(n; t;v.b;u,,4.h) evalstoa h[n/u,t/v,a/i] evalstoc
R(suc(n); t; v.b; u, v, i.h) evals-to ¢

Here is a typical example of R used to define addition in the usual primitive

recursive way.
R(n; m;v.v;u, v, a.suc(a))

We see that

R(0;m; ——) evals_tom , i.e. 0O+m=m .
R(suc(n); m; ——) evals_to suc(R(n;m; —=)),
i.e. suc(n)+m evals_to suc(n + m)

Once we have introduced binding phrases into terms, the format for equality and
consequent typing rules must change. Consider typing R. We want to say that if
and u,v,4.h have certain types, then R has a certain type. But the type of b al .
will depend on the types of u,v and i. For example, the type of v.u will be T8
context in which the variable v is assumed to have type T'. Let us agree to use)
judgment t € T to discuss typing issues, but for this theory fragment (as for NuP
this notation is just an abbreviation for ¢ =t in T. We will use it when we intem

focus on typing issues. We might write a rule like

s b tio% =

3 R can also be defined as a combinator without variables. In this case the primitive 2° 4

application rather than substitution. o Uit
331f 4, is a free variable of t then it is captured in #.exp(t/z] by the binding occurrent

Types 735

neNteA nggl uGNz;lEG%;iEBg

R(n;t;v.b;u,v,1.h) € By

The premises
ueENvEAIEB

h € B,
reads “h has type Bp under the assumption that u has type N, u has type A; and
j has type Ba.”
For ease of writing we render this hypothetical typing judgment as
w:N, v:iA, i:By F h € B;. The syntax »: N is a variant of w € N which
stresses that u is a variable. Now the typing of R can be written

neN teN viAiFbe By, u:N, v:A;, i:By-h€ By
R(n;t;v.b;u,v,%. h) € By

. .This format tells us that n,t,b and h are possibly compound expressions of the
indicated types with v, u, 7 as variables assumed to be of the indicated types.

‘ Following our practice of subsuming the typing judgment in the equality one, we
introduce the following rule. ’

First let
Principle_argument == n=n'inN
Auz_argument == t=1tinN
Base_equality == v=vinA; Fb=1"VinB,
Induction_equality == u=1v'inN,v=vinA;,i=17inBy+h="hinBy

Then the rule is

P g .
rinciple_argument Auz_argument Base_equality Induction_equality
R(n;t;v.b;u,v,e. h) = R(n';t;v'. b5 0/, v/, €/ B) in By

Un'
It and empty types. We have already seen a need for a type with exactly one

em g
» ent, called a unit type. We take 1 as the type name and e as the element, and
Dt the rules: ’

e=einl

We o
eopt the' convention that such a rule automatically adds the new terms e and 1
Collection of terms. We also automatically add

e evals_to e 1 evalsto 1

Ying;,
q entate that the new terms are canonical unless we stipulate otherwise with a
€valuation rule.

736 R. Constable

We will have reasons later for wanting the “dual” of the unit type. This is the
empty type, 0, with no elements. There is no rule for elements, but we postulate (
is.a type from which we have that we 0 as a term and 0 evals_to 0

An interesting point about handling 0 is to decide what we mean by assuming
z € 0. Does

z:0Fz€0

make sense? Is this a sensible judgment? We seem to be saying that if we assume
z belongs to 0 and that O is type, then z indeed belongs to O. We clearly know
functionality vacuously since there are no closed terms ¢,t' with ¢ = t in 0. It is
more interesting to ask about such anomalies as

z:0FzeN or z:0Fz€l

or even the possible nonsense
z:0FNeN

What are we to make of these “boundary conditions” in the design of the theory?

According to our semantics and Martin-Lof’s typing judgments, even z :0 P
(suc = N in N) is a true judgment because we require that 0 is a type and for ¢, in
0,if t = ¢ in 0, then suc € NN € N and suc = N in N. Since anything is true for
all ¢, in 0, the judgment is true.

This conclusion is somewhat bizarre, but we will see later that there will be other
types, of the form {z : A | P(x)} whose emptiness is unknown. So our recourse is
to treat types uniformly and not attempt to make a special judgment in the case of
assumptions of the form z : T for which T might be empty.

List types. The list data type is almost as central to computing as the natural
numbers. We presented this type in the logic as well, and we follow that example
even though we can see lists as a special case of the recursive types to be discusse.d
later (section 4). The rules are more compact and pleasing to examine if we omit
the typing context 7 and use the typing abbreviation of ¢t € T' for ¢t =1 in T. 50
although we will write a rule like®*

a €A, lelist(A)
cons(a;l) € list(A)

Without its typing context, we intend the full rule

Tha=ainA Tkl=1inlist(A)
T F cons(a;1) = cons(a’;I') in list(A).

2 3 2 . . ' Ferent
341n this section we use list(A) instead of Alist to stress that we are developing & differ

theory than in section 2.

Types 737

We also introduce a form of primitive recursion on lists, the combinator L whose
evaluation rule and typing rules are:

blt/v] evals_to c
L(nil; p; v.b; h,t,v,1.9) evals_to c

L(l,s,v.b,h,t,v,4.9) evals_to c; gla/h,l/t,s/v,c1/i] evals_to c,
L(cons(a;1); s;v.b; hyt,v,1.9) evals_to cy

Let L{z; b, g] = L(z;v. b; h,t,v,e. g), and

Hp==v=vinSFb=1V € B,

Hg==h=hinA, t=tinlist(A),v=v'inS, i=iinBFg=g in B,
Cyp==Fa=4din A,

Cs==Fs=4¢"1in G, and

Cuiist ==F 1 =1"in list(A), then

HB HS CA CS CAlist
Llcons(a;1),b; g] = L[cons(a’; '), ¥, g'Tin list(A)

L(nil;v.b; h,t,v,i.9) = L(nil; v.b'; b, t,v,4.¢") in list(A)

' Here are typical generalizations of the functions add, mult, exp to N list to
ilustrate the use of L. For the list (3, 8, 5, 7, 2) the operations behave as follows.
Add addL is 3+ (8 + (54 (7+ (2+0))))), multL is 3% 8% 5% T 2% 1, expL, is
(@222
addL(l) == L(l;0;h,t,a.add(h,a))
multL(l) == L(l;1; h,t,m.mult(h,m))
expL(l)y == L(l;k; h,t,e.exp(h,e)).
The induction rule for lists is expressed using L as follows. Let Hg ==

z € list(A),y € S, ve S+ flnil/z,v/y]=bin B
Ad let Hlist =&

T €list(A),y € S,h € At € list(A),v € S,i € BF flcons(h;t)/z,v/y] = g in B,
then
Hg Hijst
! z € list(A),y € S& f = L(z; y;v.b;h,t,v,4.9) in B
8 says that L defines a unique functional expression over list(A) and S because

&) : .
y V_alues as inductively determined by the evaluation rule completely determine
Ctions over list(A).

	Scanned Document_20141112100752
	Scanned Document_20141112100816
	Scanned Document_20141112100840
	Scanned Document_20141112100858

